Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.325
Filtrar
1.
Sci Rep ; 14(1): 5941, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467734

RESUMO

Prolonged febrile seizures (FS) in children are linked to the development of temporal lobe epilepsy (MTLE). The association between these two pathologies may be ascribed to the long-term effects that FS exert on neural stem cells, negatively affecting the generation of new neurons. Among the insults associated with FS, oxidative stress is noteworthy. Here, we investigated the consequences of exposure to hydrogen peroxide (H2O2) in an induced pluripotent stem cell-derived neural stem cells (iNSCs) model of a patient affected by FS and MTLE. In our study, we compare the findings from the MTLE patient with those derived from iNSCs of a sibling exhibiting a milder phenotype defined only by FS, as well as a healthy individual. In response to H2O2 treatment, iNSCs derived from MTLE patients demonstrated an elevated production of reactive oxygen species and increased apoptosis, despite the higher expression levels of antioxidant genes and proteins compared to other cell lines analysed. Among the potential causative mechanisms of enhanced vulnerability of MTLE patient iNSCs to oxidative stress, we found that these cells express low levels of the heat shock protein HSPB1 and of the autophagy adaptor SQSTM1/p62. Pre-treatment of diseased iNSCs with the antioxidant molecule ascorbic acid restored HSBP1 and p62 expression and simultaneously reduced the levels of ROS and apoptosis. Our findings suggest the potential for rescuing the impaired oxidative stress response in diseased iNSCs through antioxidant treatment, offering a promising mechanism to prevent FS degeneration in MTLE.


Assuntos
Epilepsia do Lobo Temporal , Convulsões Febris , Criança , Humanos , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Convulsões Febris/tratamento farmacológico , Convulsões Febris/genética , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Ácido Ascórbico/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Hipocampo/metabolismo , Proteínas de Choque Térmico/metabolismo
2.
Ageing Res Rev ; 96: 102248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408490

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.


Assuntos
Epilepsia do Lobo Temporal , Ferroptose , Doenças Mitocondriais , Humanos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Convulsões/complicações , Convulsões/metabolismo , Convulsões/patologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia
3.
Brain Res ; 1831: 148820, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417653

RESUMO

Epilepsy is a prevalent chronic neurological disorder characterized by recurrent seizures and brain dysfunction. Existing antiepileptic drugs (AEDs) mainly act on neurons and provide symptomatic control of seizures, but they do not modify the progression of epilepsy and may cause serious adverse effects. Increasing evidence suggests that reactive astrogliosis is critical in the pathophysiology of epilepsy. However, the function of reactive astrocytes in epilepsy has not been thoroughly explored. To provide a new perspective on the role of reactive astrocytes in epileptogenesis, we identified human astrocyte-specific genes and found 131 of these genes significantly differentially expressed in human temporal lobe epilepsy (TLE) datasets. Multiple astrocytic functions, such as cell adhesion, cell morphogenesis, actin filament-based process, apoptotic cell clearance and response to oxidative stress, were found to be promoted. Moreover, multiple altered astrocyte-specific genes were enriched in phagocytosis, perisynaptic astrocyte processes (PAPs), plasticity, and synaptic functions. Nine hub genes (ERBB2, GFAP, NOTCH2, ITGAV, ABCA1, AQP4, LRP1, GJA1, and YAP1) were identified by protein-protein interaction (PPI) network analysis. The correlation between the expression of these hub genes and seizure frequency, as well as epilepsy-related factors, including inflammatory mediators, complement factors, glutamate excitotoxicity and astrocyte reactivity, were analyzed. Additionally, upstream transcription factors of the hub genes were predicted. Finally, astrogliosis and the expression of the hub genes were validated in an epileptic rat model. Our findings reveal the various changes in astrocyte function associated with epilepsy and provide candidate astrocyte-specific genes that could be potential antiepileptogenic targets.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Ratos , Humanos , Animais , Epilepsia do Lobo Temporal/metabolismo , Astrócitos/metabolismo , Gliose/metabolismo , Convulsões/metabolismo , Epilepsia/metabolismo
4.
Brain Res ; 1829: 148792, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325559

RESUMO

Temporal lobe epilepsy (TLE) development is associated with dysregulation of glutamatergic transmission in the hippocampus; however, detailed molecular mechanisms of pathological changes are still poorly understood. In the present study, we performed the complex analysis of glutamatergic system in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). Daily AGS stimulations (audiogenic kindling) were used to reproduce the dynamics of TLE development. Naïve KM rats were used as a control. After 14 AGS, at the stage of developing TLE, KM rats demonstrated significant upregulation of extracellular signal-regulated kinases (ERK) 1 and 2, cAMP response element-binding protein (CREB), and c-Fos in the hippocampus indicating activation of the hippocampal cells. These changes were accompanied with an increase in glutaminase and vesicular glutamate transporter (VGLUT) 2 suggesting the activation of glutamate production and loading into the synaptic vesicles. After 21 AGS, when TLE was fully-established, alterations were similar but more pronounced, with higher activation of glutaminase, increase in glutamate production, upregulation of VGLUT1 and 2, and Fos-related antigen 1 (Fra-1) along with c-Fos. Analysis of glutamate receptors showed variable changes. Thus, after 14 AGS, simultaneous increase in metabotropic glutamate receptor mGluR1 and decrease in ionotropic N-methyl-D-aspartate (NMDA) receptors could reflect compensatory anti-epileptic mechanism, while further kindling progression induced upregulation of ionotropic receptors, probably, contributing to the hippocampal epileptization. However, we revealed practically no alterations in the expression of synaptic proteins. Altogether, obtained results suggested that overactivation of glutamate production in the hippocampus strongly contributed to TLE development in KM rats.


Assuntos
Epilepsia Reflexa , Epilepsia do Lobo Temporal , Excitação Neurológica , Ratos , Animais , Glutaminase/metabolismo , Hipocampo/metabolismo , Epilepsia Reflexa/metabolismo , Excitação Neurológica/fisiologia , Epilepsia do Lobo Temporal/metabolismo , Predisposição Genética para Doença , Ácido Glutâmico/metabolismo , Convulsões/metabolismo , Estimulação Acústica
5.
ACS Chem Neurosci ; 15(5): 983-993, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38355427

RESUMO

Temporal lobe epilepsy (TLE) is one of the most common neurological disorders, often accompanied by hippocampal sclerosis. The molecular processes underlying this epileptogenesis are poorly understood. To examine the lipid profile, 39 fresh frozen sections of the human hippocampus obtained from epilepsy surgery for TLE (n = 14) and non-TLE (control group; n = 25) patients were subjected to desorption electrospray ionization mass spectrometry imaging in the negative ion mode. In contrast to our earlier report that showed striking downregulation of positively charged phospholipids (e.g., phosphatidylcholine and phosphatidylethanolamine, etc.) in the TLE hippocampus, this study finds complementary upregulation of negatively charged phospholipids, notably, phosphatidylserine and phosphatidylglycerol. This result may point to an active metabolic pool in the TLE hippocampus that produces these anionic phospholipids at the expense of the cationic phospholipids. This metabolic shift could be due to the dysregulation of the Kennedy and CDP-DG pathways responsible for biosynthesizing these lipids. Thus, this study further opens up opportunities to investigate the molecular hallmarks and potential therapeutic targets for TLE.


Assuntos
Epilepsia do Lobo Temporal , Fosfolipídeos , Humanos , Fosfolipídeos/metabolismo , Hipocampo/metabolismo , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/cirurgia , Espectrometria de Massas , Regulação para Cima , Imageamento por Ressonância Magnética/métodos
6.
Sci Rep ; 14(1): 4835, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418461

RESUMO

An increasing number of studies have focused on the role of NEDD4-2 in regulating neuronal excitability and the mechanism of epilepsy. However, the exact mechanism has not yet been elucidated. Here, we explored the roles of NEDD4-2 and the CLC-2 channel in regulating neuronal excitability and mesial temporal lobe epilepsy (MTLE) pathogenesis. First, chronic MTLE models were induced by lithium-pilocarpine in developmental rats. Coimmunoprecipitation analysis revealed that the interaction between CLC-2 and NEDD4-2. Western blot analyses indicated that NEDD4-2 expression was downregulated, while phosphorylated (P-) NEDD4-2 and CLC-2 expression was upregulated in adult MTLE rats. Then, the primary hippocampal neuronal cells were isolated and cultured, and the NEDD4-2 was knocked down by shRNA vector, resulting in decreased protein levels of CLC-2. While CLC-2 absence caused increased NEDD4-2 in cells. Next, in an epileptic cell model induced by a Mg2+-free culture, whole-cell current-clamp recording demonstrated that NEDD4-2 deficiency inhibited the spontaneous action potentials of cells, and CLC-2 absence caused more significant decrease in the spontaneous action potentials of cells. In conclusion, we herein revealed that NEDD4-2 regulates the expression of CLC-2, which is involved in neuronal excitability, and participates in the pathogenesis of MTLE.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Ratos , Canais de Cloro CLC-2 , Modelos Animais de Doenças , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Pilocarpina/efeitos adversos
7.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338969

RESUMO

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Assuntos
Barreira Hematoencefálica , Epilepsia do Lobo Temporal , Epilepsia , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Estado Epiléptico , Animais , Humanos , Ratos , Barreira Hematoencefálica/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Pericitos/metabolismo , Pilocarpina/efeitos adversos , Ratos Sprague-Dawley , Estado Epiléptico/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
8.
Biomed Chromatogr ; 38(4): e5820, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154955

RESUMO

Temporal lobe epilepsy (TLE) is a common form of refractory epilepsy in adulthood. The metabolic profile of epileptogenesis is still poorly investigated. Elucidation of such a metabolic profile using animal models of epilepsy could help identify new metabolites and pathways involved in the mechanisms of epileptogenesis process. In this study, we evaluated the metabolic profile during the epileptogenesis periods. Using a pilocarpine model of epilepsy, we analyzed the global metabolic profile of hippocampal extracts by untargeted metabolomics based on ultra-performance liquid chromatography-high-resolution mass spectrometry, at three time points (3 h, 1 week, and 2 weeks) after status epilepticus (SE) induction. We demonstrated that epileptogenesis periods presented different hippocampal metabolic profiles, including alterations of metabolic pathways of amino acids and lipid metabolism. Six putative metabolites (tryptophan, N-acetylornithine, N-acetyl-L-aspartate, glutamine, adenosine, and cholesterol) showed significant different levels during epileptogenesis compared to their respective controls. These putative metabolites could be associated with the imbalance of neurotransmitters, mitochondrial dysfunction, and cell loss observed during both epileptogenesis and epilepsy. With these findings, we provided an overview of hippocampal metabolic profiles during different stages of epileptogenesis that could help investigate pathways and respective metabolites as predictive tools in epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Epilepsia/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Metaboloma , Pilocarpina/metabolismo
9.
Sci Rep ; 13(1): 22187, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38092829

RESUMO

Transient brain insults including status epilepticus (SE) can initiate a process termed 'epileptogenesis' that results in chronic temporal lobe epilepsy. As a consequence, the entire tri-synaptic circuit of the hippocampus is fundamentally impaired. A key role in epileptogenesis has been attributed to the CA1 region as the last relay station in the hippocampal circuit and as site of aberrant plasticity, e.g. mediated by acquired channelopathies. The transcriptional profiles of the distinct hippocampal neurons are highly dynamic during epileptogenesis. Here, we aimed to elucidate the early SE-elicited mRNA signature changes and the respective upstream regulatory cascades in CA1. RNA sequencing of CA1 was performed in the mouse pilocarpine-induced SE model at multiple time points ranging from 6 to 72 h after the initial insult. Bioinformatics was used to decipher altered gene expression, signalling cascades and their corresponding cell type profiles. Robust transcriptomic changes were detected at 6 h after SE and at subsequent time points during early epileptogenesis. Major differentially expressed mRNAs encoded primarily immediate early and excitability-related gene products, as well as genes encoding immune signalling factors. Binding sites for the transcription factors Nfkb1, Spi1, Irf8, and two Runx family members, were enriched within promoters of differentially expressed genes related to major inflammatory processes, whereas the transcriptional repressors Suz12, Nfe2l2 and Rest were associated with hyperexcitability and GABA / glutamate receptor activity. CA1 quickly responds to SE by inducing transcription of genes linked to inflammation and excitation stress. Transcription factors mediating this transcriptomic switch represent targets for new highly selected, cell type and time window-specific anti-epileptogenic strategies.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Camundongos , Animais , Hipocampo/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Neurônios/metabolismo , Pilocarpina/toxicidade , Fatores de Transcrição/metabolismo , Modelos Animais de Doenças
10.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069126

RESUMO

Arsenic-containing hydrocarbons (AsHCs) are typical arsenolipids found in various marine organisms. They can penetrate the blood-brain barrier, specifically affecting synaptic plasticity and the learning and memory ability of hippocampal neurons. Temporal lobe epilepsy often occurs in the hippocampus. Thus, the possible influence of AsHCs exposure to temporal lobe epilepsy garnered attention. The present study investigated the effects of epileptiform discharges (EDs) signals introduced by low-magnesium ACSF in the hippocampus of infantile male rats in vitro, using electrophysiological techniques with multi-electrode arrays under AsHC 360 exposure. In our study of the effects of AsHC 360 on EDs signals, we found that inter-ictal discharges (IIDs) were not significantly impacted. When AsHC 360 was removed, any minor effects observed were reversed. However, when we examined the impact of AsHC 360 on ictal discharges (IDs), distinct patterns emerged based on the concentration levels. For low-concentration groups (5, 20, 60 µg As L-1), both the frequency and duration effects on IDs returned to normal post-elimination of AsHC 360. However, this recovery was not evident for concentrations of 100 µg As L-1 or higher. IDs were only observed in EDs signals during exposures to AsHC 360 concentrations up to 60 µg As L-1. In these conditions, ID frequencies significantly enhanced with the increased of AsHC 360 concentration. At high concentrations of AsHC 360 (≥100 µg As L-1), the transition from IIDs or pre-ictal discharges (PIDs) to IDs was notably inhibited. Additional study on co-exposure of AsHC 360 (100 µg As L-1) and agonist (10 nM (S)-(-)-Bay-K-8644) indicated that the regulation of EDs signals under AsHC 360 exposure could be due to directly interference with the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) expression which influences the binding of excitatory glutamate neurotransmitter to AMPAR. The results suggest that EDs activities in the hippocampus of infantile Sprague Dawley rats are concentration-dependent on AsHC 360 exposure. Thus, it provides a basis for the seafood intake with AsHCs for epileptic patients and those with potential seizures.


Assuntos
Arsênio , Epilepsia do Lobo Temporal , Epilepsia , Humanos , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Arsênio/metabolismo
11.
Neurobiol Dis ; 188: 106346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37931884

RESUMO

Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , MicroRNAs , Animais , Humanos , Camundongos , Giro Denteado/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Fibras Musgosas Hipocampais , Serina-Treonina Quinases TOR/metabolismo
12.
BMC Med Imaging ; 23(1): 185, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964218

RESUMO

BACKGROUND: 1H magnetic resonance spectroscopy (1H-MRS) can be used to study neurological disorders because it can be utilized to examine the concentrations of related metabolites. However, the diagnostic utility of different field strengths for temporal lobe epilepsy (TLE) remains unclear. The purpose of this study is to make quantitative comparisons of metabolites of TLE at 1.5T and 3.0T and evaluate their efficacy. METHODS: Our retrospective collections included the single-voxel 1H-MRS of 23 TLE patients and 17 healthy control volunteers (HCs) with a 1.5T scanner, as well as 29 TLE patients and 17 HCs with a 3.0T scanner. Particularly, HCs were involved both the scans with 1.5T and 3.0T scanners, respectively. The metabolites, including the N-acetylaspartate (NAA), creatine (Cr), and choline (Cho), were measured in the left or right temporal pole of brain. To analyze the ratio of brain metabolites, including NAA/Cr, NAA/Cho, NAA/(Cho + Cr) and Cho/Cr, four controlled experiments were designed to evaluate the diagnostic utility of TLE on 1.5T and 3.0T MRS, included: (1) 1.5T TLE group vs. 1.5T HCs by the Mann-Whitney U Test, (2) 3.0T TLE group vs. 3.0T HCs by the Mann-Whitney U Test, (3) the power analysis for the 1.5T and 3.0T scanner, and (4) 3.0T HCs vs. 1.5T HCs by Paired T-Test. RESULTS: Three metabolite ratios (NAA/Cr, NAA/Cho, and NAA/(Cho + Cr) showed the same statistical difference (p < 0.05) in distinguishing the TLE from HCs in the bilateral temporal poles when using 1.5T or 3.0T scanners. Similarly, the power analysis demonstrated that four metabolite ratios (NAA/Cr, NAA/Cho, NAA/(Cho + Cr), Cho/Cr) had similar distinction abilities between 1.5T and 3.0T scanner, denoting both 1.5T and 3.0T scanners were provided with similar sensitivities and reproducibilities for metabolites detection. Moreover, the metabolite ratios of the same healthy volunteers were not statistically different between 1.5T and 3.0T scanners, except for NAA/Cho (p < 0.05). CONCLUSIONS: 1.5T and 3.0T scanners may have comparable diagnostic potential when 1H-MRS was used to diagnose patients with TLE.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/metabolismo , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Espectroscopia de Ressonância Magnética/métodos , Lobo Temporal/metabolismo , Creatina/metabolismo , Colina
13.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833937

RESUMO

The European Commission of the International League Against Epilepsy (ILAE) has identified glial mechanisms of seizures and epileptogenesis as top research priorities. The aim of our study was to conduct a comparative analysis of the expression levels of cytoskeletal proteins (glial fibrillar acidic protein (GFAP) and vimentin), protective protein S100, and proapoptotic caspase-3 protein in patients with drug-resistant epilepsy (DRE) associated with focal cortical dysplasia (FCD). We aimed to investigate how the expression levels of these proteins depend on age (both in children and adults), gender, and disease duration, using immunohistochemistry. Nonparametric statistical methods were employed for data analysis. In the epileptic focus area of the cortex and white matter in patients with FCD-associated temporal lobe DRE, a higher level of expression of these proteins was observed. Age and gender differences were found for vimentin and S100. In the early stages of disease development, there was a compensatory sequential increase in the expression of cytoskeletal and protective proteins. In patients with DRE, depending on the disease duration, patterns of development of neurodegeneration were noted, which is accompanied by apoptosis of gliocytes. These results provide insights into epilepsy mechanisms and may contribute to improving diagnostic and treatment approaches.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Displasia Cortical Focal , Humanos , Adulto , Criança , Epilepsia do Lobo Temporal/metabolismo , Vimentina/genética , Vimentina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Epilepsia/metabolismo , Lobo Temporal/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Estudos Retrospectivos
14.
J Neuroinflammation ; 20(1): 247, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880726

RESUMO

BACKGROUND: The astrocytes in the central nervous system (CNS) exhibit morphological and functional diversity in brain region-specific pattern. Functional alterations of reactive astrocytes are commonly present in human temporal lobe epilepsy (TLE) cases, meanwhile the neuroinflammation mediated by reactive astrocytes may advance the development of hippocampal epilepsy in animal models. Nuclear factor I-A (NFIA) may regulate astrocyte diversity in the adult brain. However, whether NFIA endows the astrocytes with regional specificity to be involved in epileptogenesis remains elusive. METHODS: Here, we utilize an interference RNA targeting NFIA to explore the characteristics of NFIA expression and its role in astrocyte reactivity in a 4-aminopyridine (4-AP)-induced seizure model in vivo and in vitro. Combined with the employment of a HA-tagged plasmid overexpressing NFIA, we further investigate the precise mechanisms how NIFA facilitates epileptogenesis. RESULTS: 4-AP-induced NFIA upregulation in hippocampal region is astrocyte-specific, and primarily promotes detrimental actions of reactive astrocyte. In line with this phenomenon, both NFIA and vanilloid transient receptor potential 4 (TRPV4) are upregulated in hippocampal astrocytes in human samples from the TLE surgical patients and mouse samples with intraperitoneal 4-AP. NFIA directly regulates mouse astrocytic TRPV4 expression while the quantity and the functional activity of TRPV4 are required for 4-AP-induced astrocyte reactivity and release of proinflammatory cytokines in the charge of NFIA upregulation. NFIA deficiency efficiently inhibits 4-AP-induced TRPV4 upregulation, weakens astrocytic calcium activity and specific astrocyte reactivity, thereby mitigating aberrant neuronal discharges and neuronal damage, and suppressing epileptic seizure. CONCLUSIONS: Our results uncover the critical role of NFIA in astrocyte reactivity and illustrate how epileptogenic brain injury initiates cell-specific signaling pathway to dictate the astrocyte responses.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Fatores de Transcrição NFI , Canais de Cátion TRPV , Animais , Humanos , Camundongos , 4-Aminopiridina/efeitos adversos , Astrócitos/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima
15.
Epilepsia ; 64(10): 2827-2840, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543852

RESUMO

OBJECTIVE: Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development. The cytoplasmic polyadenylation element-binding protein CPEB4 was found to drive epilepsy-induced poly(A) tail changes, and mice lacking CPEB4 develop a more severe seizure and epilepsy phenotype. The mechanisms controlling CPEB4 function and the downstream pathways that influence the recurrence of spontaneous seizures in epilepsy remain poorly understood. METHODS: Status epilepticus was induced in wild-type and CPEB4-deficient male mice via an intra-amygdala microinjection of kainic acid. CLOCK binding to the CPEB4 promoter was analyzed via chromatin immunoprecipitation assay and melatonin levels via high-performance liquid chromatography in plasma. RESULTS: Here, we show increased binding of CLOCK to recognition sites in the CPEB4 promoter region during status epilepticus in mice and increased Cpeb4 mRNA levels in N2A cells overexpressing CLOCK. Bioinformatic analysis of CPEB4-dependent genes undergoing changes in their poly(A) tail during epilepsy found that genes involved in the regulation of circadian rhythms are particularly enriched. Clock transcripts displayed a longer poly(A) tail length in the hippocampus of mice post-status epilepticus and during epilepsy. Moreover, CLOCK expression was increased in the hippocampus in mice post-status epilepticus and during epilepsy, and in resected hippocampus and cortex of patients with drug-resistant temporal lobe epilepsy. Furthermore, CPEB4 is required for CLOCK expression after status epilepticus, with lower levels in CPEB4-deficient compared to wild-type mice. Last, CPEB4-deficient mice showed altered circadian function, including altered melatonin blood levels and altered clustering of spontaneous seizures during the day. SIGNIFICANCE: Our results reveal a new positive transcriptional-translational feedback loop involving CPEB4 and CLOCK, which may contribute to the regulation of the sleep-wake cycle during epilepsy.


Assuntos
Proteínas CLOCK , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Melatonina , Proteínas de Ligação a RNA , Estado Epiléptico , Animais , Humanos , Masculino , Camundongos , Epilepsia do Lobo Temporal/metabolismo , Hipocampo , Melatonina/sangue , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Convulsões , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Fatores de Transcrição/metabolismo , Proteínas CLOCK/genética
16.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446307

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults. Tissue reorganization at the site of the epileptogenic focus is accompanied by changes in the expression patterns of protein molecules. The study of mRNA and its corresponding proteins is crucial for understanding the pathogenesis of the disease. Protein expression profiles do not always directly correlate with the levels of their transcripts; therefore, it is protein profiling that is no less important for understanding the molecular mechanisms and biological processes of TLE. The study and annotation of proteins that are statistically significantly different in patients with TLE is an approach to search for biomarkers of this disease, various stages of its development, as well as a method for searching for specific targets for the development of a further therapeutic strategy. When writing a systematic review, the following aggregators of scientific journals were used: MDPI, PubMed, ScienceDirect, Springer, and Web of Science. Scientific articles were searched using the following keywords: "proteomic", "mass-spectrometry", "protein expression", "temporal lobe epilepsy", and "biomarkers". Publications from 2003 to the present have been analyzed. Studies of brain tissues, experimental models of epilepsy, as well as biological fluids, were analyzed. For each of the groups, aberrantly expressed proteins found in various studies were isolated. Most of the studies omitted important characteristics of the studied patients, such as: duration of illness, type and response to therapy, gender, etc. Proteins that overlap across different tissue types and different studies have been highlighted: DPYSL, SYT1, STMN1, APOE, NME1, and others. The most common biological processes for them were the positive regulation of neurofibrillary tangle assembly, the regulation of amyloid fibril formation, lipoprotein catabolic process, the positive regulation of vesicle fusion, the positive regulation of oxidative stress-induced intrinsic apoptotic signaling pathway, removal of superoxide radicals, axon extension, and the regulation of actin filament depolymerization. MS-based proteomic profiling for a relevant study must accept a number of limitations, the most important of which is the need to compare different types of neurological and, in particular, epileptic disorders. Such a criterion could increase the specificity of the search work and, in the future, lead to the discovery of biomarkers for a particular disease.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Adulto , Humanos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia/metabolismo , Proteínas/metabolismo , Espectrometria de Massas , Biomarcadores/metabolismo , Lobo Temporal/metabolismo
17.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511107

RESUMO

Over a third of patients with temporal lobe epilepsy (TLE) are not effectively treated with current anti-seizure drugs, spurring the development of gene therapies. The injection of adeno-associated viral vectors (AAV) into the brain has been shown to be a safe and viable approach. However, to date, AAV expression of therapeutic genes has not been regulated. Moreover, a common property of antiepileptic drugs is a narrow therapeutic window between seizure control and side effects. Therefore, a long-term goal is to develop drug-inducible gene therapies that can be regulated by clinically relevant drugs. In this study, a first-generation doxycycline-regulated gene therapy that delivered an engineered version of the leak potassium channel Kcnk2 (TREK-M) was injected into the hippocampus of male rats. Rats were electrically stimulated until kindled. EEG was monitored 24/7. Electrical kindling revealed an important side effect, as even low expression of TREK M in the absence of doxycycline was sufficient to cause rats to develop spontaneous recurring seizures. Treating the epileptic rats with doxycycline successfully reduced spontaneous seizures. Localization studies of infected neurons suggest seizures were caused by expression in GABAergic inhibitory neurons. In contrast, doxycycline increased the expression of TREK-M in excitatory neurons, thereby reducing seizures through net inhibition of firing. These studies demonstrate that drug-inducible gene therapies are effective in reducing spontaneous seizures and highlight the importance of testing for side effects with pro-epileptic stressors such as electrical kindling. These studies also show the importance of evaluating the location and spread of AAV-based gene therapies in preclinical studies.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Ratos , Masculino , Animais , Doxiciclina/farmacologia , Neurônios/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Terapia Genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Modelos Animais de Doenças
18.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511346

RESUMO

Although seizures are a hallmark feature of temporal lobe epilepsy (TLE), psychiatric comorbidities, including psychosis, are frequently associated with TLE and contribute to decreased quality of life. Currently, there are no defined therapeutic protocols to manage psychosis in TLE patients, as antipsychotic agents may induce epileptic seizures and are associated with severe side effects and pharmacokinetic and pharmacodynamic interactions with antiepileptic drugs. Thus, novel treatment strategies are necessary. Several lines of evidence suggest that hippocampal hyperactivity is central to the pathology of both TLE and psychosis; therefore, restoring hippocampal activity back to normal levels may be a novel therapeutic approach for treating psychosis in TLE. In rodent models, increased activity in the ventral hippocampus (vHipp) results in aberrant dopamine system function, which is thought to underlie symptoms of psychosis. Indeed, we have previously demonstrated that targeting α5-containing γ-aminobutyric acid receptors (α5GABAARs), an inhibitory receptor abundant in the hippocampus, with positive allosteric modulators (PAMs), can restore dopamine system function in rodent models displaying hippocampal hyperactivity. Thus, we posited that α5-PAMs may be beneficial in a model used to study TLE. Here, we demonstrate that pilocarpine-induced TLE is associated with increased VTA dopamine neuron activity, an effect that was completely reversed by intra-vHipp administration of GL-II-73, a selective α5-PAM. Further, pilocarpine did not alter the hippocampal α5GABAAR expression or synaptic localization that may affect the efficacy of α5-PAMs. Taken together, these results suggest augmenting α5GABAAR function as a novel therapeutic modality for the treatment of psychosis in TLE.


Assuntos
Epilepsia do Lobo Temporal , Pilocarpina , Animais , Pilocarpina/efeitos adversos , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Dopamina/metabolismo , Qualidade de Vida , Hipocampo/metabolismo , Modelos Animais de Doenças
19.
Int J Neuropsychopharmacol ; 26(10): 669-679, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417335

RESUMO

BACKGROUND: Diminished heart rate variability (HRV) has been observed in epilepsy, especially in epilepsy with depressive disorders. However, the underlying mechanism remains elusive. METHODS: We studied HRV, spontaneous recurrent seizures, and depression-like behaviors in different phases of pilocarpine-induced temporal lobe epilepsy (TLE) in mice. Single-cell RNA sequencing analysis was used to identify various nerve cell subsets in TLE mice with and without depression. Differentially expressed gene (DEG) analysis was performed in epilepsy, depression, and HRV central control-related brain areas. RESULTS: We found decreased HRV parameters in TLE mice, and alterations were positively correlated with the severity of depression-like behaviors. The severity of depression-like behaviors was correlated with the frequency of spontaneous recurrent seizure. Characteristic expression of mitochondria-related genes was significantly elevated in mice with depression in glial cells, and the enrichment analysis of those DEGs showed an enriched GABAergic synapse pathway in the HRV central control-related brain area. Furthermore, inhibitory neurons in the nucleus tractus solitarius, which is an HRV central control-related brain area, were specifically expressed in TLE mice combined with depression compared with those in mice without depression. A significantly enriched long-term depression pathway in DEGs from inhibitory neurons was found. CONCLUSIONS: Our study reported correlations between HRV and epilepsy-depression comorbidity in different phases of TLE. More importantly, we found that HRV central control-related inhibitory neurons are involved in the development of depression in TLE, providing new insights into epilepsy comorbid with depression.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Camundongos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Núcleo Solitário/metabolismo , Frequência Cardíaca/fisiologia , Depressão/etiologia , Convulsões/metabolismo , Neurônios/metabolismo
20.
J Neuroinflammation ; 20(1): 161, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422673

RESUMO

Impaired activation and regulation of the extinction of inflammatory cells and molecules in injured neuronal tissues are key factors in the development of epilepsy. SerpinA3N is mainly associated with the acute phase response and inflammatory response. In our current study, transcriptomics analysis, proteomics analysis, and Western blotting showed that the expression level of Serpin clade A member 3N (SerpinA3N) is significantly increased in the hippocampus of mice with kainic acid (KA)-induced temporal lobe epilepsy, and this molecule is mainly expressed in astrocytes. Notably, in vivo studies using gain- and loss-of-function approaches revealed that SerpinA3N in astrocytes promoted the release of proinflammatory factors and aggravated seizures. Mechanistically, RNA sequencing and Western blotting showed that SerpinA3N promoted KA-induced neuroinflammation by activating the NF-κB signaling pathway. In addition, co-immunoprecipitation revealed that SerpinA3N interacts with ryanodine receptor type 2 (RYR2) and promotes RYR2 phosphorylation. Overall, our study reveals a novel SerpinA3N-mediated mechanism in seizure-induced neuroinflammation and provides a new target for developing neuroinflammation-based strategies to reduce seizure-induced brain injury.


Assuntos
Epilepsia do Lobo Temporal , Serpinas , Animais , Camundongos , Astrócitos/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Ácido Caínico/toxicidade , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Transdução de Sinais , Serpinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...